Please Enable the Desktop mode for better view experience

100-Big Data Technologies Mastery Plan

1. About Big Data Technologies

Big Data Technologies are tools and frameworks designed to store, process, and analyze large datasets that traditional data processing systems cannot handle. These technologies are essential for industries like finance, healthcare, e-commerce, and social media, where data is generated at an unprecedented scale.

Key Characteristics of Big Data (3 Vs):

  • Volume : Massive amounts of data.
  • Velocity : High-speed data generation and processing.
  • Variety : Structured, semi-structured, and unstructured data.

Key Applications:

  • Data Warehousing : Storing and querying large datasets.
  • Real-Time Analytics : Processing data streams in real-time.
  • Machine Learning : Training models on large datasets.
  • Business Intelligence : Generating insights from big data.

2. Why Learn Big Data Technologies?

  • High Demand : Big Data engineers and analysts are in high demand across industries.
  • Scalability : Handle massive datasets efficiently using distributed systems.
  • Versatility : Used in diverse fields like finance, healthcare, marketing, and IoT.
  • Career Growth : Lucrative salaries and opportunities for advancement.
  • Tools & Frameworks : Learn popular technologies like Hadoop, Spark, Kafka, and NoSQL databases.

3. Full Syllabus

Phase 1: Basics (Weeks 1–4)

  1. Introduction to Big Data
    • What is Big Data?
    • Key Concepts: Batch Processing vs Real-Time Processing.
    • Challenges: Storage, Processing, and Analysis of Big Data.
  2. Linux Basics
    • Command Line Interface (CLI): File operations, permissions, and scripting.
    • Setting up a Linux environment for Big Data tools.
  3. Hadoop Ecosystem
    • HDFS (Hadoop Distributed File System) : Storing large datasets across clusters.
    • MapReduce : Distributed data processing framework.
    • Tools: Apache Hadoop, Hive, Pig.
  4. NoSQL Databases
    • Types of NoSQL Databases: Key-Value Stores, Document Stores, Columnar Stores, Graph Databases.
    • Tools: MongoDB, Cassandra, HBase.

Phase 2: Intermediate (Weeks 5–8)

  1. Apache Spark
    • Core Concepts : RDDs (Resilient Distributed Datasets), DataFrames, and Datasets.
    • Spark SQL : Querying structured data.
    • Spark Streaming : Real-time data processing.
  2. Data Ingestion
    • Tools: Apache Kafka, Apache Flume.
    • Use Cases: Streaming data from sources like social media, IoT devices.
  3. Data Warehousing
    • Tools: Apache Hive, Amazon Redshift, Google BigQuery.
    • Querying large datasets using SQL-like syntax.
  4. Data Visualization
    • Tools: Tableau, Power BI.
    • Visualizing insights from Big Data.

Phase 3: Advanced (Weeks 9–12)

  1. Real-Time Analytics
    • Tools: Apache Flink, Apache Storm.
    • Use Cases: Fraud detection, real-time recommendations.
  2. Cloud-Based Big Data Solutions
    • Platforms: AWS (EMR, S3, Athena), Google Cloud (BigQuery, Dataproc), Azure (HDInsight).
    • Managing Big Data workflows in the cloud.
  3. Machine Learning with Big Data
    • Tools: Apache Mahout, MLlib (Spark’s Machine Learning Library).
    • Training models on large datasets.
  4. Data Governance & Security
    • Ensuring data privacy and compliance.
    • Tools: Apache Ranger, Apache Atlas.

Phase 4: Real-World Applications (Weeks 13–16)

  1. Building a Data Pipeline
    • Ingest data using Kafka or Flume.
    • Process data using Spark or Flink.
    • Store data in HDFS or a NoSQL database.
  2. Big Data in Business Intelligence
    • Analyze customer behavior, sales trends, and market data.
    • Tools: Tableau, Power BI.
  3. IoT & Big Data
    • Collect and analyze data from IoT devices.
    • Tools: Apache Kafka, Spark Streaming.
  4. Ethics in Big Data
    • Addressing bias in data collection and analysis.
    • Ensuring data privacy and security.

4. Projects to Do

Beginner Projects

  1. Word Count Using Hadoop MapReduce :
    • Count the frequency of words in a large text file.
    • Tools: Apache Hadoop.
  2. NoSQL Database Setup :
    • Store and query data using MongoDB or Cassandra.
    • Dataset: Sample JSON or CSV data.
  3. Data Ingestion with Kafka :
    • Stream tweets using Apache Kafka.
    • Tools: Twitter API, Apache Kafka.

Intermediate Projects

  1. Log Analysis with Spark :
    • Analyze server logs to identify errors or patterns.
    • Tools: Apache Spark.
  2. Real-Time Dashboard :
    • Build a dashboard to visualize streaming data.
    • Tools: Apache Kafka, Spark Streaming, Tableau.
  3. Movie Recommendation System :
    • Build a recommendation engine using collaborative filtering.
    • Tools: Apache Spark (MLlib).

Advanced Projects

  1. Fraud Detection System :
    • Detect fraudulent transactions in real-time.
    • Tools: Apache Flink, Spark Streaming.
  2. Cloud-Based Data Pipeline :
    • Build a data pipeline using AWS EMR or Google Dataproc.
    • Tools: AWS S3, Google BigQuery.
  3. Sentiment Analysis on Social Media :
    • Analyze sentiment in tweets or reviews using Spark.
    • Tools: Apache Spark, NLTK.

5. Valid Links for Learning Big Data Technologies

English Resources

  1. freeCodeCamp :
  2. Edureka :
  3. Simplilearn :
  4. Apache Spark Official Channel :
  5. Kafka Tutorials :

Hindi Resources

  1. CodeWithHarry :
  2. Thapa Technical :
  3. Hitesh Choudhary :

6. Final Tips

  1. Start Small : Begin with simple projects like word count using Hadoop to understand the basics of Big Data.
  2. Practice Daily : Spend at least 1 hour coding every day.
  3. Focus on Tools : Master tools like Hadoop, Spark, Kafka, and NoSQL databases.
  4. Stay Updated : Follow blogs like Towards Data Science , Medium , or Analytics Vidhya for the latest updates.
  5. Join Communities : Engage with forums like Reddit’s r/bigdata or Discord groups for support.

100-Day Master Plan

1Introduction to Big Data & Its ImportanceBig Data Basics
2Characteristics of Big Data (5 Vs: Volume, Velocity, Variety, Veracity, Value)5 Vs of Big Data
3Big Data Ecosystem OverviewBig Data Ecosystem
4Setting Up Environment for Big Data ToolsHadoop Setup
5Hadoop BasicsHadoop Official Docs
6HDFS ArchitectureHDFS Guide
7MapReduce FrameworkMapReduce Tutorial
8Writing Your First MapReduce ProgramMapReduce Example
9YARN ArchitectureYARN Guide
10Hive BasicsHive Official Docs
11HiveQL (DDL, DML, Queries)HiveQL Tutorial
12Partitioning & Bucketing in HivePartitioning & Bucketing
13Pig BasicsPig Official Docs
14Writing Scripts in Pig LatinPig Latin Tutorial
15Apache Spark BasicsSpark Official Docs
16RDDs in SparkRDD Guide
17Spark SQLSpark SQL Guide
18Spark StreamingSpark Streaming Guide
19MLlib for Machine Learning in SparkMLlib Guide
20GraphX for Graph Processing in SparkGraphX Guide
21Apache Kafka BasicsKafka Official Docs
22Kafka Producers & ConsumersKafka Tutorial
23Kafka StreamsKafka Streams Guide
24Apache Flink BasicsFlink Official Docs
25Flink DataStream APIDataStream API
26Flink Batch ProcessingBatch Processing
27Apache HBase BasicsHBase Official Docs
28CRUD Operations in HBaseHBase CRUD
29Cassandra BasicsCassandra Official Docs
30Cassandra Query Language (CQL)CQL Guide
31Data Modeling in CassandraData Modeling
32MongoDB BasicsMongoDB Official Docs
33CRUD Operations in MongoDBMongoDB CRUD
34Aggregation Framework in MongoDBAggregation
35Elasticsearch BasicsElasticsearch Official Docs
36Indexing & Searching in ElasticsearchIndexing & Search
37Kibana for Data VisualizationKibana Guide
38Apache NiFi for Data IngestionNiFi Official Docs
39Data Pipelines with Apache NiFiNiFi Tutorials
40Apache Airflow for Workflow OrchestrationAirflow Official Docs
41DAGs in Apache AirflowDAG Guide
42Apache Oozie for Workflow SchedulingOozie Official Docs
43Sqoop for Data Transfer Between RDBMS & HadoopSqoop Guide
44Flume for Log Data CollectionFlume Official Docs
45Zookeeper for Distributed CoordinationZookeeper Guide
46Presto for Distributed SQL QueryingPresto Official Docs
47Drill for Schema-Free SQL QueryingDrill Official Docs
48Delta Lake for Reliable Data LakesDelta Lake Guide
49Finalize and Document Your ProjectsDocumentation Best Practices
50Build a Word Count Application Using Hadoop MapReduceWord Count Example
51Analyze Logs Using Apache Flume & HDFSFlume + HDFS
52Build a Real-Time Data Pipeline with Kafka & Spark StreamingKafka + Spark
53Perform Sentiment Analysis on Twitter Data Using HiveTwitter Sentiment
54Build a Recommendation System Using Spark MLlibSpark MLlib
55Analyze Clickstream Data Using Apache FlinkFlink Example
56Build a Distributed Database with Apache HBaseHBase Example
57Build a Scalable Chat Application with Kafka & CassandraKafka + Cassandra
58Perform Fraud Detection Using Spark & MLlibFraud Detection
59Build a Real-Time Dashboard with Elasticsearch & KibanaElasticsearch + Kibana
60Analyze IoT Sensor Data Using Apache NiFiNiFi Example
61Automate ETL Pipelines with Apache AirflowAirflow Example
62Build a Data Lake with Delta LakeDelta Lake Example
63Perform Customer Segmentation Using Spark & K-MeansK-Means Example
64Analyze Social Media Data Using Hive & PigSocial Media Dataset
65Build a Distributed File System with HDFSHDFS Example
66Perform Anomaly Detection Using FlinkFlink Example
67Build a Real-Time Stock Price Tracker with Kafka & SparkStock Price Dataset
68Analyze Healthcare Data Using HBaseHealthcare Dataset
69Build a Log Analytics System with Flume & ElasticsearchFlume + Elasticsearch
70Perform Text Classification Using Spark MLlibText Classification
71Build a Real-Time Fraud Detection System with Kafka & FlinkFraud Detection
72Analyze E-commerce Data Using Hive & SparkE-commerce Dataset
73Build a Distributed Search Engine with ElasticsearchSearch Engine
74Perform Time Series Forecasting Using SparkTime Series
75Build a Recommendation System for Movies Using CassandraMovieLens Dataset
76Analyze Energy Consumption Data Using HadoopEnergy Dataset
77Build a Real-Time Chatbot with Kafka & Spark StreamingChatbot Example
78Perform Clustering on Retail Data Using SparkRetail Dataset
79Build a Distributed Graph Processing System with GraphXGraphX Example
80Analyze Traffic Data Using Flink & KafkaTraffic Dataset
81Build a Real-Time Dashboard for Sales Data with KibanaSales Dataset
82Perform Sentiment Analysis on Product Reviews Using SparkProduct Reviews
83Build a Distributed Data Warehouse with PrestoPresto Example
84Analyze Weather Data Using Hive & SparkWeather Dataset
85Build a Real-Time Event Processing System with Kafka & FlinkEvent Processing
86Perform Image Classification Using Spark MLlibImage Dataset
87Build a Distributed Log Management System with Flume & HDFSLog Management
88Analyze Financial Data Using Hive & SparkFinancial Dataset
89Build a Real-Time Anomaly Detection System with Kafka & SparkAnomaly Detection
90Perform Topic Modeling on News Articles Using SparkNews Articles
91Build a Distributed Recommendation System with CassandraRecommendation System
92Analyze Social Network Data Using GraphXSocial Network Dataset
93Build a Real-Time Dashboard for IoT Data with KibanaIoT Dataset
94Perform Predictive Maintenance Using SparkPredictive Maintenance
95Build a Distributed Data Lake with Delta LakeDelta Lake Example
96Analyze Customer Churn Data Using Hive & SparkChurn Dataset
97Finalize and Document Your ProjectsDocumentation Best Practices
Scroll to Top