Please Enable the Desktop mode for better view experience

100-Day Python Mastery Plan

1. About Python

Python is a beginner-friendly programming language used for web development, data science, automation, AI, and more. Its simple syntax makes it easy to learn, while its powerful libraries make it versatile for advanced tasks.


2. Why Learn Python?

  • Easy to Learn : Simple syntax, perfect for beginners.
  • Versatile : Used in web development, data analysis, AI, automation, etc.
  • High Demand : Python developers are in demand across industries.
  • Automation : Automate repetitive tasks like file handling, scraping, etc.
  • Future-Proof : Essential for AI, machine learning, and emerging tech.

3. Full Syllabus

Phase 1: Basics (Weeks 1–4)

  1. Introduction to Python
    • Install Python and set up tools (VS Code, Jupyter Notebook).
    • Write your first “Hello World” program.
    • Learn basic syntax (indentation, comments).
  2. Variables & Data Types
    • Numbers (int, float), Strings, Booleans.
    • Type conversion (e.g., str(), int()).
  3. Operators
    • Arithmetic (+, -, *, /), Comparison (==, !=), Logical (and, or).
  4. Control Flow
    • If-Else statements.
    • Loops (For, While).
    • Break, Continue.
  5. Input/Output
    • Take user input (input()).
    • Display output (print()).

Phase 2: Intermediate (Weeks 5–8)

  1. Functions
    • Define functions (def).
    • Parameters and return values.
    • Lambda functions.
  2. Data Structures
    • Lists, Tuples, Sets, Dictionaries.
    • List comprehensions.
  3. File Handling
    • Read/write files.
    • Handle exceptions (try-except).

Phase 3: Advanced (Weeks 9–12)

  1. Object-Oriented Programming (OOP)
    • Classes and objects.
    • Inheritance, Encapsulation, Polymorphism.
  2. Regular Expressions (Regex)
    • Pattern matching (re module).
  3. Multithreading
    • Run tasks concurrently.
  4. Libraries
    • NumPy (arrays), Pandas (dataframes), Matplotlib (graphs).

Phase 4: Real-World Applications (Weeks 13–16)

  1. Web Development
    • Flask/Django for building websites.
  2. Automation
    • Automate tasks like file organization, email sending.
  3. APIs & Web Scraping
    • Use APIs to fetch data.
    • Scrape websites using Beautiful Soup or Selenium.
  4. Machine Learning
    • Train models with Scikit-learn or TensorFlow.

4. Projects to Do

Beginner Projects

  1. Calculator : Build a calculator using functions.
    • Concepts: Functions, Input/Output.
    • Tutorial .
  2. To-Do List App : Create a command-line app to manage tasks.
  3. Number Guessing Game : Guess a random number.

Intermediate Projects

  1. File Organizer : Automate organizing files into folders.
    • Concepts: File Handling, OS Module.
    • Tutorial .
  2. Weather App : Fetch weather data using an API.
  3. Expense Tracker : Track daily expenses and generate reports.
    • Concepts: File Handling, Data Structures.
    • Tutorial .

Advanced Projects

  1. Portfolio Website : Build a personal website using Flask/Django.
  2. Chatbot : Create a chatbot using NLP.
  3. Automated Social Media Bot : Automate posting or liking on social media.

5. YouTube Links for Learning Python

English Resources

  1. Programming with Mosh : Python Full Course .
  2. Corey Schafer : Python Tutorials .
  3. freeCodeCamp : Python Projects .

Hindi Resources

  1. CodeWithHarry : Python Playlist .
  2. Telusko : Python Projects .
  3. MySirG.com : Python Tutorials .

6. Final Tips

  1. Practice Daily : Spend at least 1 hour coding every day.
  2. Build Projects : Apply what you learn by building real-world projects.
  3. Join Communities : Engage with forums like Reddit, Stack Overflow, or local Python groups.
  4. Stay Consistent : Follow the roadmap step-by-step without skipping topics.
  5. Document Progress : Keep a journal or GitHub repository to track your learning.

100 Days Master Plans

Sr.noTopics To be CoverResources
1Introduction to PythonPython.org
2Setting Up Python EnvironmentAnaconda Installation
3Basic Syntax and VariablesW3Schools – Python Basics
4Data Types: Numbers, StringsReal Python – Data Types
5Operators (Arithmetic, Comparison, Logical)Programiz – Python Operators
6Input and OutputGeeksforGeeks – Input/Output
7Conditional Statements (if, elif, else)Tutorialspoint – Conditionals
8Loops (for, while)Real Python – Loops
9Break, Continue, PassProgramiz – Control Flow
10Lists and List ComprehensionsW3Schools – Lists
11Tuples and Tuple MethodsGeeksforGeeks – Tuples
12Dictionaries and Dictionary MethodsReal Python – Dictionaries
13Sets and Set OperationsProgramiz – Sets
14Functions: Defining and CallingW3Schools – Functions
15Function Arguments and Return ValuesGeeksforGeeks – Functions
16Lambda FunctionsReal Python – Lambda
17Modules and ImportingProgramiz – Modules
18Standard Library OverviewPython Docs – Standard Library
19File Handling: Reading and Writing FilesW3Schools – File Handling
20Exception Handling (try, except, finally)Real Python – Exceptions
21Custom ExceptionsGeeksforGeeks – Custom Exceptions
22Object-Oriented Programming (OOP) BasicsProgramiz – OOP
23Classes and ObjectsW3Schools – Classes
24Constructors (init)Real Python – Constructors
25InheritanceGeeksforGeeks – Inheritance
26PolymorphismProgramiz – Polymorphism
27EncapsulationW3Schools – Encapsulation
28AbstractionReal Python – Abstraction
29Magic Methods (str,repr, etc.)GeeksforGeeks – Magic Methods
30Iterators and IterablesProgramiz – Iterators
31Generators and YieldReal Python – Generators
32DecoratorsW3Schools – Decorators
33Advanced DecoratorsReal Python – Advanced Decorators
34Working with Dates and TimeProgramiz – Datetime
35Regular Expressions (Regex)W3Schools – Regex
36JSON ParsingReal Python – JSON
37CSV File HandlingProgramiz – CSV
38XML ParsingGeeksforGeeks – XML
39Web Scraping with BeautifulSoupReal Python – BeautifulSoup
40APIs and Requests LibraryProgramiz – Requests
41Building REST APIs with FlaskFlask Official Docs
42Flask Routing and TemplatesReal Python – Flask
43Flask Forms and ValidationFlask-WTF Docs
44Flask Database Integration (SQLAlchemy)Flask-SQLAlchemy Docs
45Testing Flask ApplicationsReal Python – Flask Testing
46NumPy BasicsNumPy Official Docs
47NumPy Arrays and OperationsW3Schools – NumPy
48Pandas BasicsPandas Official Docs
49DataFrames and SeriesReal Python – Pandas
50Data Cleaning with PandasGeeksforGeeks – Data Cleaning
51Matplotlib BasicsMatplotlib Official Docs
52Plotting with MatplotlibW3Schools – Matplotlib
53Seaborn for Statistical PlotsSeaborn Official Docs
54Data Visualization with SeabornReal Python – Seaborn
55Exploratory Data Analysis (EDA)Kaggle – EDA
56Machine Learning BasicsScikit-Learn Docs
57Supervised Learning (Regression)Real Python – Regression
58Supervised Learning (Classification)GeeksforGeeks – Classification
59Unsupervised Learning (Clustering)W3Schools – Clustering
60Model Evaluation MetricsScikit-Learn Metrics
61Hyperparameter TuningReal Python – Hyperparameter Tuning
62Feature EngineeringKaggle – Feature Engineering
63Natural Language Processing (NLP) BasicsNLTK Official Docs
64Text Preprocessing with NLTKReal Python – NLP
65Sentiment AnalysisGeeksforGeeks – Sentiment Analysis
66Word Embeddings (Word2Vec, GloVe)Medium – Word Embeddings
67TensorFlow BasicsTensorFlow Official Docs
68Building Neural Networks with TensorFlowReal Python – TensorFlow
69Keras for Deep LearningKeras Official Docs
70Convolutional Neural Networks (CNNs)W3Schools – CNN
71Recurrent Neural Networks (RNNs)Real Python – RNN
72Transfer LearningTensorFlow – Transfer Learning
73PyTorch BasicsPyTorch Official Docs
74Building Models with PyTorchReal Python – PyTorch
75Debugging and Profiling Python CodeReal Python – Debugging
76Logging in PythonGeeksforGeeks – Logging
77Multithreading in PythonProgramiz – Multithreading
78Multiprocessing in PythonReal Python – Multiprocessing
79Asyncio for Asynchronous ProgrammingW3Schools – Asyncio
80Unit Testing with unittestReal Python – Unit Testing
81Test-Driven Development (TDD)GeeksforGeeks – TDD
82Version Control with GitGit Official Docs
83GitHub for CollaborationGitHub Guides
84Docker BasicsDocker Official Docs
85Deploying Python Apps with DockerReal Python – Docker
86AWS Basics for Python DevelopersAWS Official Docs
87Deploying Flask Apps on AWSReal Python – Flask on AWS
88Google Cloud Platform (GCP) BasicsGCP Official Docs
89Deploying Python Apps on GCPReal Python – GCP
90Heroku DeploymentHeroku Dev Center
91CI/CD Pipelines with GitHub ActionsGitHub Actions Docs
92Building APIs with FastAPIFastAPI Official Docs
93GraphQL with PythonGraphene Official Docs
94WebSockets with PythonReal Python – WebSockets
95Building GUIs with TkinterTkinter Official Docs
96PyQt for Advanced GUIsPyQt Official Docs
97Game Development with PygamePygame Official Docs
98Building Chatbots with PythonChatterBot Docs
99Final Project PlanningProject Ideas
100Final Project ImplementationGitHub Repository Template

How to Use This Plan

  1. Dedicate 1-2 hours daily to complete the topic.
  2. Follow the provided resource links for detailed explanations and examples.
  3. Practice coding exercises after learning each concept.
  4. On Day 99 and 100, work on a final project to consolidate your knowledge.
,

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top